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Abstract

A new  xed-point algorithm for independent component analysis (ICA) is presented that
is able blindly to separate mixed signals with sub- and super-Gaussian source distributions.
The new  xed-point algorithm maximizes the likelihood of the ICA model under the constraint
of decorrelation and uses the method of Lee et al. (Neural Comput. 11(2) (1999) 417) to
switch between sub- and super-Gaussian regimes. The new  xed-point algorithm maximizes the
likelihood very fast and reliably. The validity of this algorithm is con rmed by the simulations
and experimental results.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Independent component analysis (ICA) [9] is a statistical technique whose main
applications are blind source separation, blind deconvolution, and feature extraction.
The following noise-free linear model of ICA is used in this paper:

x = As; (1)
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where x= (x1; x2; : : : ; xN )T is an N -dimensional observation vector, A is a nonsingular
N×N mixing matrix and s=(s1; s2; : : : ; sN )T is an N -dimensional original source vector
having independent components. The basic problem of ICA is then to estimate both
the mixing matrix A and the realizations of the independent components si using only
observations of the mixtures xi (i = 1; 2; : : : ; N ), i.e., to  nd an N × N linear mapping
W = (w1;w2; : : : ;wN )T such that the unmixed signals u = (u1; u2; : : : ; uN )T,

u =Wx (2)

are statistically independent. The sources are recovered up to scaling and permutation.
Several estimation methods for ICA have been proposed recently [1–8,10]. This paper

presents a new  xed-point algorithm for ICA. The learning algorithm can be derived
using the maximum likelihood estimation. The new  xed-point algorithm maximizes
the likelihood under the constraint of decorrelation and uses the method of Lee et al.
[10] to switch between sub- and super-Gaussian regimes.

2. The likelihood of the ICA model

From (2), the probability density function of the observations x can be expressed as
[10]

p(x) = |det(W)|p(u); (3)

where p(u) =
∏N
i=1 pi(ui) is the hypothesized distribution of p(s). Assume that we

have T observations of x, denoted by x(1); x(2); : : : ; x(T ). Then the likelihood can be
obtained as the product of this density evaluated at the T points. This is denoted by L
and considered as a function of W= (w1;w2; : : : ;wN )T. The log-likelihood is given by
[7]

log L(W) =
T∑
t=1

N∑
i=1

logpi(wT
i x(t)) + T log |det(W)|: (4)

To simplify notation, we can denote the sum over the sample index t by an expectation
operator, and divide the likelihood by T to obtain

1
T
log L(W) = E

{
N∑
i=1

logpi(wT
i x(t))

}
+ log |det(W)|: (5)

The expectation here is not the theoretical expectation, but an average computed from
the observed samples. Of course, in the algorithms the expectations are eventually
replaced by sample averages, so the distinction is purely theoretical. And maximization
of likelihood (5) make the output components independent [7].
A useful preprocessing strategy in ICA is to  rst whiten the observed variables. This

means that before the application of the ICA algorithm (and after centering, i.e. making
x a zero mean variable), we transform the observed vector x linearly so that we obtain
a new vector x̃ which is white, i.e. its components are uncorrelated and their variances
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equal unity. In other words, x is linearly transformed into a random vector

x̃ = Vx = VAs; (6)

whose covariance matrix equals the identity matrix: E{x̃x̃T}= I. Thus the ICA model
still holds. Consider the new vector x̃ and constrain the estimates of the independent
components ũi = wT

i x̃ (i = 1; 2; : : : ; N ) (ũ =Wx̃) to be uncorrelated and to have unit
variance. Now, uncorrelatedness and unit variance of the ũi means

E{ũũT}=WE{x̃x̃T}WT =WWT = I: (7)

This implies that W is orthogonal and |detW| must be constant. On the other hand,
ũi (i=1; 2; : : : ; N ) are uncorrelated, if W is orthogonal. And we can restrict our search
for the matrix W to the space of orthogonal matrices.
It is here assumed that the data is preprocessed by centering and whitening. Maxi-

mizing likelihood (5), and taking into account the constraint decorrelation, one obtains
the following optimization problem (i.e. maximizing the likelihood in the space of
orthogonal matrices):

max (W) = E

{
N∑
i=1

logpi(wT
i x̃(t))

}

s:t: WWT = I:

(8)

That is, we should  nd the vectors wi(i = 1; 2; : : : ; N ) which are orthogonal to each
other, such that

max (W) = E

{
N∑
i=1

logpi(wT
i x̃(t))

}

s:t: ‖wi‖2 = 1; i = 1; 2; : : : ; N:

(9)

3. A �xed-point algorithm for ICA

In this section, we derive a new  xed-point algorithm for ICA. We note that at
a stable point of the optimization problem (9), the partial derivative of (W) at wi
(i.e. @(W)=@wi) must point in the direction of wi (i=1; 2; : : : ; N ), that is, the partial
derivative must be equal to wi multiplied by some scalar constant (according to the
Kuhn–Tucker conditions [11]). Only in such a case, adding the partial derivative to
wi does not change its direction, and we can have convergence. This means that we
should have

W← @(W)
@W

= E{g(ũ)x̃T}= E{g(ũ)ũT}W; (10)

where ũ=Wx̃(t), WWT=I; g(ũ)=(g1(ũ1); g2(ũ2); : : : ; gN (ũN ))T; gi(ũi)=(logpi(ũi))′=
(pi(ũi))′=pi(ũi) (i=1; 2; : : : ; N ). The parametric density estimate pi(ũi) plays an essen-
tial role in the success of the learning rule in Eq. (10). As Lee et al. [10] introduced,
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the switching between the sub- and super-Gaussian nonlinearities is

gi(ũi) =

{−ũi − tanh(ũi); super-Gaussian;

−ũi + tanh(ũi); sub-Gaussian:

Thus, the switching between the sub- and super-Gaussian learning rule is

W← E{−K tanh(ũ)ũT − ũũT}W
{
ki = 1; super-Gaussian;

ki =−1; sub-Gaussian;
(11)

where ki are elements of the N -dimensional diagonal matrix K (a switching matrix
based on stability criteria [10]),

ki = sign(E{sech2(ũi)}E{ũ2i } − E{[tanh(ũi)]ũi}): (12)

After every  xed-point iteration, orthogonalization of W can be done by the symmetric
orthogonalization methods [6]. In other words

W← (WWT)−1=2W: (13)

Thus, we obtain the new  xed-point algorithm as follows:

(i) center the data to make its mean zero;
(ii) whiten the data to give x̃(t);
(iii) choose an initial orthogonal matrix for W;
(iv) compute ũ = Wx̃(t), the N -dimensional diagonal matrix K = diag(ki), ki =

sign(E{sech2(ũi)}E{ũ2i } − E{[tanh(ũi)]ũi}), for i = 1; 2; : : : ; N ;
(v) update the separating matrix by W← E{−K tanh(ũ)ũT − ũũT}W;
(vi) do a symmetric orthogonalization of the matrix W by W← (WWT)−1=2W;
(vii) if not converged, go back to step (iv).

Note that convergence means that the old and new values of wi point in the same
direction, i.e. their dot-product is (almost) equal to 1 (i = 1; 2; : : : ; N ).

4. Simulations and experimental results

Five random signals (5000 data points); one Gaussian, two sub-Gaussian and two
super-Gaussian available with MATLAB were used for simulations (available at
http://www.cis.hut. /projects/ica). The new  xed-point algorithm separated the random
signals exactly as the originals. The waveforms (200 data points) of  ve original sig-
nals, their mixtures, and the separated output signals are shown in Fig. 1. Furthermore,
the following algorithms were included in the comparison:

• the FastICA  xed-point algorithm [6], using the tanh nonlinearity with symmetric
orthogonalization (FPsymth);
• natural gradient algorithm for maximum likelihood estimation [10], i.e. extended
infomax algorithm (ExtICA);
• the new  xed-point algorithm (NewFP).

http://www.cis.hut.fi/projects/ica
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Fig. 1. Exact separation of  ve random signals by the new  xed-point algorithm. ((a1)–(a5)) The
 ve original signals: one Gaussian source, two sub-Gaussian sources and two super-Gaussian sources.
((b1)–(b5)) The input mixtures. ((c1)–(c5)) The recovered signals.

The algorithms were compared along the two sets of criteria, statistical and computa-
tional. The computational load was measured as iteration needed for convergence. The
statistical performance, or accuracy, was measured using a performance index, de ned
as [1]

E =
N∑
i=1


 N∑
j=1

|pij|
maxk |pik | − 1


+

N∑
j=1

(
N∑
i=1

|pij|
maxk |pkj| − 1

)
; (14)

where pij is the ijth element of N × N matrix P = WA. The larger the value E
is, the poorer the statistical performance of a separation algorithm. We performed
experiments with the  ve random signals above. For achieving statistical reliability,
the experiment was repeated over 100 diLerent realizations of the input data. For
each of the 100 realizations, the accuracy was measured using the error index E. The
computational load was measured as iteration needed for convergence. Fig. 2 shows a
diagram of the computational load vs. the statistical performance. One sees clearly that
the FPsymth requires the smallest amount of computation, but its statistical performance
is not as good as the other two. The ExtICA provides the better separated results, but
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Fig. 2. The computational load vs. the performance index E.

its computational load is the largest. The new  xed-point algorithm is much faster than
the ExtICA and obtains the best statistical performance. Averagely, the three algorithms
took 0:69 s (FPsymth), 2:82 s (NewFP), 10:16 s (ExtICA) in the computations (2 GHz
Pentium4). If the Gaussian signal is not included, the statistical performance of the
FPsymth is as good as the other two.

5. Conclusions

A new  xed-point algorithm for ICA is presented that is able blindly to sepa-
rate mixed signals with sub- and super-Gaussian source distributions. The independent
component analysis model is estimated by maximum likelihood estimation. The new
 xed-point algorithm maximizes the likelihood under the constraint of decorrelation,
and uses the method of Lee et al. [10] to switch between sub- and super-Gaussian
regimes. The new  xed-point algorithm is diLerent from the  xed-point algorithm of
HyvMarinen [6] which is in fact an approximative Newton method. The new  xed-point
algorithm maximizes the likelihood very fast and reliably. The validity of this algorithm
is con rmed by the simulations and experimental results.
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