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Abstract

Expectation–Maximization (EM) algorithms for independent component analysis are

presented in this paper. For super-Gaussian sources, a variational method is employed to

develop an EM algorithm in closed form for learning the mixing matrix and inferring the

independent components. For sub-Gaussian sources, a symmetrical form of the Pearson

mixture model (Neural Comput. 11 (2) (1999) 417–441) is used as the prior, which also enables

the development of an EM algorithm in fclosed form for parameter estimation.

r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Blind source separation (BSS) by independent component analysis (ICA) has
received great attention due to its potential signal processing applications
see front matter r 2004 Elsevier B.V. All rights reserved.
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[1,2,4–6,8,10]. In particular, the following ICA model is considered in this paper

x ¼ As þ e; ð1Þ

where A 2 RN�M is the mixing matrix, x is an N-dimensional data vector, the
elements of s which is an M-dimensional random vector define the independent
components, and e is the noise which is modelled as Gaussian with zero mean and
covariance matrix S: In ICA, the elements of s are assumed mutually statistically
independent denoting that the joint probability distribution of s is factorable, i.e.,
pðsÞ ¼

QM
m¼1 pðsmÞ; where p represents the probability density function (p.d.f.). The

aim of ICA is as follows: Given T observed data samples fxtg
T
t¼1; recover the mixing

matrix A, the original source sequences fstg
T
t¼1; and the noise covariance matrix S:

Several researchers have proposed various methods for estimating the mixing
matrix and the noise covariance matrix, in which the posterior moments are
estimated by various approximation techniques [2,5,10,12,13]. In contrast to these
methods, this paper presents a combined estimation method for the source signals,
the mixing matrix and the noise covariance matrix based on the Expectation–Max-
imization (EM) algorithm [3]. For super-Gaussian sources, a variational method
enables the posterior analytically tractable [4,7], which formulates an EM algorithm
in closed form for parameter estimation. For sub-Gaussian sources, the Pearson
mixture model [8] is employed to be the source density, which naturally gives an EM
algorithm in closed form for parameter estimation.
2. Parameter estimation methods

In ICA, it has been shown that there are only two density models for the source
priors, i.e., the super-Gaussian density which has a positive kurtosis and the sub-
Gaussian density which has a negative kurtosis.1 In this section, we will derive EM
algorithms in accordance with these two source densities, respectively.

2.1. Super-Gaussian density model

In ICA, a super-Gaussian density which has a positive kurtosis is placed on the
independent components. In particular, since the elements of s are assumed mutually
statistically independent we employ the following factorable super-Gaussian density
as the source model [8]

pðsÞ ¼
YM
m¼1

1

ZðbÞ
Gsm

ð0; 1Þcosh	2=b
ðbsmÞ; ð2Þ

where the notation Gsm
ð0; 1Þ denotes a normal distribution computed at sm with zero

mean and unit variance, b is a constant and ZðbÞ is the normalizing coefficient
irrelevant to s. This prior renders the posterior, i.e., pðsjx;A;SÞ; analytically
1For a scalar random variable y, kurtosis is defined in the zero-mean case by the equation kurtðyÞ ¼

Efy4g 	 3ðEfy2gÞ
2 (For more details, see [6].)
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intractable. In the following, we will derive a strict lower bound on this prior, which
gives a closed form for parameter estimation in an EM framework.

The prior density in Eq. (2) has a strict lower bound over the additional
variational parameter x ¼ ðx1; x2; . . . ; xMÞ

T such that (see Appendix)

pðsÞXpðsjxÞ ¼
YM
m¼1

jðxmÞGsð0;LÞ; ð3Þ

where

L ¼ diag
x1

x1 þ 2 tanhðbx1Þ
; . . . ;

xM

xM þ 2 tanhðbxMÞ

� �
:

Note that as b ! 1; the density in Eq. (2) becomes the following factorable
Laplacian:

pðsÞ /
YM
m¼1

Gsm
ð0; 1Þ expð	2jsmjÞX

YM
m¼1

jðxmÞGsð0;LÞ; ð4Þ

where

L ¼ diag
jx1j

jx1j þ 2
; . . . ;

jxM j

jxM j þ 2

� �
;

which is used as the interesting prior in learning sparse and overcomplete
representations [10,4]. It should be noted that the variational lower bound on the
prior derived in this paper is similar to the one presented by Girolami [4], who
introduced the variational method into learning sparse and overcomplete
representations. (For a specific application of the variational method to machine
learning, see [7].) Fig. 1 shows ranges of the variances of the lower bounds in the
Gaussian form presented in this paper and those proposed by Girolami [4], i.e., the
variances of the lower bounds in this paper belong to ½0; 1Þ and the ones presented in
[4] belong to ½0;1Þ; reflecting that the prior employed in this paper has a smaller
variance than the one used in [4]. Furthermore, given the previous strict lower bound
on the prior, the corresponding posterior can be represented as a strict lower bound
in Gaussian form

pðsjx;A;SÞXpðsjx;A;S; xÞ ¼
pðxjs;A;SÞpðsjxÞR
pðxjs;A;SÞpðsjxÞds

¼
GxðAs;SÞGsð0;LÞR
GxðAs;SÞGsð0;LÞds

: ð5Þ

Thus, a normal form of the following variational moments can be easily obtained
based on the posterior pðsjx;A;S; xÞ:

Efsjxt; xtg ¼ ðATS	1A þ L	1
t Þ

	1ATS	1xt; ð6Þ

EfssT jxt; xtg ¼ ðATS	1A þ L	1
t Þ

	1
þ Efsjxt; xtgEfsjxt; xtg

T : ð7Þ
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Fig. 1. Variance of the variational lower bound in Gaussian form. The variational parameter x runs along

the horizontal axis, with the vertical axis giving the value of variance. The plots of the presented variances

s2 ¼
x

xþ 2 tanhðxÞ
and s2 ¼

jxj
jxj þ 2

are, respectively, denoted by the dot line and the solid line, comparing the plots of the variances

s2 ¼
x

tanhðxÞ
and s2 ¼ jxj

[4] being, respectively, denoted by the dash line and the dot-dash line.
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Now given these conditional moments for the lower bound on the posterior, it is an
easy task to derive an EM algorithm in closed form for parameter estimation. For
each data sample, there is a corresponding M-dimensional variational parameter
associated with it. Given T data samples fxtg

T
t¼1; we will estimate the parameters A, S

and fxtg
T
t¼1 by maximizing the data log-likelihood

log pðxjA;S; xÞ ¼
XT

t¼1

logfpðxtjA;S; xtÞg:

Conveniently, the standard forms of M-step for the parameters A, S and x can be
represented as (for derivations, see [4])

xnew
t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag½EfssT jxt; xtg�

p
; ð8Þ
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Anew ¼
XT

t¼1

xtEfsjxt; xtg
T

( ) XT

t¼1

EfssT jxt; xtg

( )	1

; ð9Þ

Snew ¼
1

T

XT

t¼1

fxtx
T
t 	 AnewEfsjxt; xtgx

T
t g: ð10Þ

Note that

Mt ¼ ðATS	1A þ L	1
t Þ

	1
¼ Lt 	 LtA

T ðALtA
T þ SÞ	1ALt: ð11Þ

This transformation of the matrix inversion allows a really hard inverse to be
converted into an easy inverse especially when considering BSS of more sources than
mixtures, i.e., A has many columns but few rows. Inserting the terms for the
variational posterior moments into Eq. (8)–(10) gives the following updates for the
parameters A, S; and x:

xnew
t ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diag½MtfI þ ATS	1xtxT

t S
	1AMtg�

q
; ð12Þ

Anew ¼
XT

t¼1

xtx
T
t S

	1AMT
t

( ) XT

t¼1

MtfI þ ATS	1xtx
T
t S

	1AMtg

( )	1

; ð13Þ

Snew ¼
1

T

XT

t¼1

xtx
T
t 	 Anew 1

T

XT

t¼1

MtA
TS	1xtx

T
t : ð14Þ

Eq. (12) serves to improve the variational data likelihood pðxjA;S; xÞ to the true data
likelihood, and the convergence properties of the EM algorithm [3] ensure that
pðxjA;SÞXpðxjA;S; xnew

ÞXpðxjA;S; xold
Þ:
2.2. Sub-Gaussian density model

For sources with sub-Gaussian densities, the following Pearson mixture model in
the univariate case is employed in this paper [8]:

pðsÞ ¼ 1
2
ðGsðm; s2Þ þ Gsð	m; s2ÞÞ: ð15Þ

This mixture model is a symmetric strictly sub-Gaussian density and may serve as a
suitable density for computing the score function of symmetric sub-Gaussian
sources. Lee et al. [8] had derived a learning rule for complete ICA without additive
noise. Actually, this Pearson mixture model makes the posterior analytically
tractable and thus it is not required to employ various approximations for it such
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that

pðsjx;A;SÞ ¼
pðxjs;A;SÞpðsÞR
pðxjs;A;SÞpðsÞds

¼
GxðAs;SÞGsðm;VÞ þ GxðAs;SÞGsð	m;VÞR

GxðAs;SÞGsðm;VÞds þ
R

GxðAs;SÞGsð	m;VÞds
; ð16Þ

where V ¼ s2I: Note that W ¼ ðATS	1A þ V	1Þ
	1

¼ V 	 VAT ðAVAT þ SÞ	1AV:
This posterior conveniently gives the following moments:

Efsjxtg ¼ WATS	1xt; ð17Þ

EfssT jxtg ¼ W þ W ðATS	1xtx
T
t S

	1A þ V	1mmT V	T ÞW T : ð18Þ

Inserting these moments into Eqs. (9) and (10) gives the following updates:

Anew ¼
XT

t¼1

xtx
T
t S

	1AW T

( )

�
XT

t¼1

W I þ ðATS	1xtx
T
t S

	1A þ V	1mmT V	T ÞW T
� 
( )	1

; ð19Þ

Snew ¼
1

T

XT

t¼1

xtx
T
t 	 Anew 1

T

XT

t¼1

WATS	1xtx
T
t : ð20Þ
3. Simulations

To compare this proposed method with Girolami’s EM algorithm [4], where the
prior was set to be pðsÞ ¼ cosh	1

ðsÞ; the error measure used in [8] was computed in
the first experiment for standard BSS with three speech sources (see Fig. 2). The
result shows that the performance of the proposed method is similar to Girolami’s
EM algorithm, though the proposed method slightly increased the convergence
speed in this experiment.

The second experiment shows the ability of the proposed EM algorithm to
perform blind separation of binary sources with more sources than observations.
Fig. 3 shows the result. The complexity of Pajunen’s method [11] grows
exponentially with the number of the sources, whereas the complexity of this EM
algorithm scales as OðN3Þ:

The third experiment shows the ability of the method to learn sparse
representation for speech data which were obtained from the TIMIT database,
using the speech of a single speaker, speaking 10 different example sentences. Speech
segments with 64 samples were randomly selected from the 10 speech signals, where
each of the speech signals has 16 bits per sample at the sampling frequency of
16 000 HZ. Both a complete (64 basis vectors) and an overcomplete basis (128 basis
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Fig. 2. Error measure [8] for the separation of three sound sources. The solid line plots the performance

for the EM algorithm outlined in Eqs. (12), (13) and (14), and the dot line plots the performance for the

method proposed by Girolami [4].
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vectors) were learned. Fig. 4 shows the learned complete basis vectors which are
referred to as the columns of the mixing matrix in the linear ICA model in Eq. (1).
This result is similar to those reported in [9,10].
4. Conclusions

This paper has presented a variational method for blind separation of super-
Gaussian sources. For sub-Gaussian sources, the Pearson mixture model is
employed as the prior, which naturally gives an EM algorithm in closed form for
parameter estimation. Simulation results show that the proposed method can
perform blind separation of both super-Gaussian and sub-Gaussian sources.
Appendix

For the univariate heavy-tailed distribution in Eq. (2), it is desirous to consider the
following log-density:

hðsÞ ¼ logfpðsÞg ¼ C 	 1
2

s2 	 2b logfebs þ e	bsg; ð21Þ
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Fig. 3. (a–c) The three original binary images. (d,e) The noisy observations. (f–h) The inferred images

using the EM method outlined in Eqs. (19) and (20).

Fig. 4. Sixty-four basis vectors learned from the segments of natural speech which consisted of 64 samples

in duration.
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where C ¼ log 4ffiffiffiffi
2p

p : It can be seen that this log-prior is convex in s2 due to 	 logfebs þ

e	bsg being convex in s2 [7]. Thus, the variational representation for hðsÞ has the
following form [7]:

hðsÞ ¼ max
x

fðs2 	 x2
Þrx2 hðxÞ þ hðxÞg; ð22Þ

where rx2 denotes the gradient with respect to x2: It should be indicated that the
maximum in the above representation is naturally attained for s2 ¼ x2: This
conveniently gives the following expression:

pðsÞ ¼ max
x

½jðxÞGsð0; s2
xÞ�; ð23Þ

where

jðxÞ ¼ pðxÞ exp
x2

þ 2x tanhðbxÞ
2

� � ffiffiffiffiffiffiffiffiffiffi
2ps2

x

q
and s2

x ¼
x

xþ 2 tanhðbxÞ
:
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