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Abstract

Complexity pursuit is a recently developed algorithm using the gradient descent for

separating interesting components from time series. It is an extension of projection pursuit to

time series data and the method is closely related to blind separation of time-dependent source

signals and independent component analysis (ICA). In this paper, a fixed-point algorithm for

complexity pursuit is introduced. The fixed-point algorithm inherits the advantages of the

well-known FastICA algorithm in ICA, which is very simple, converges fast, and does not

need choose any learning step sizes.
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1. Introduction

Independent component analysis (ICA) has been widely applied to blind source
separation, blind deconvolution, and feature extraction, and so on. The model of
ICA consists of mixing independent random variables, usually linearly
[1,2,4,5,9,11,13,18,19,21,22]. In many applications, however, what is mixed is not
random variables but time signals, or time series. ICA in its basic form ignores any
time structure and uses only the nongaussianity criteria. It is to be noted that under
certain restrictions, it is also possible to estimate the independent components using
the time-dependency information alone [3,15,16,20]. However, a principled way of
combining both of these estimation criteria (nongaussianity and time-correlations)
has been introduced by Hyvärinen in the complexity pursuit algorithm [10].
Complexity pursuit is an extension of projection pursuit [6] to time series, that is,
signals with time structure. The goal is to find projections of time series that have
interesting structure, defined using criteria related to Kolmogoroff complexity [17] or
coding length. Time series which have the lowest coding complexity are considered
the most interesting. Hyvärinen derived a simple approximation of Kolmogoroff
complexity that takes into account both the nongaussianity and the autocorrelations
of the time series. He developed a gradient ascent algorithm for its approximative
optimization. The method is closely related to blind separation of time-dependent
source signals and ICA.

In this paper, motivated by the work of Hyvärinen, we propose a fixed-point
algorithm for complexity pursuit. The fixed-point algorithm inherits the advantages
of the well-known FastICA algorithm [9,11] in ICA.
2. Complexity pursuit

Assume that the observed data are multivariate time series xðtÞ; that is, a vector of
time signals. The basic idea in the complexity pursuit is to find projections wT xðtÞ

such that the Kolmogoroff complexity of the projection is minimized. We search for
projections that can be easily coded in the complexity pursuit. This is a general-
purpose measure and is probably connected to information-processing principles
used in the brain [10].

First, we derive an approximation of the Kolmogoroff complexity of a scalar
signal yðtÞðt ¼ 1; . . . ;TÞ along similar lines as Hyvärinen [10]. For simplicity, the
signal is assumed to have zero mean and unit variance.

We consider predictive coding of the signal. The value yðtÞ is predicted from the
preceding values by some function to be specified:

ŷðtÞ ¼ f ðyðt� 1Þ; . . . ; yð1ÞÞ: (1)

To code the actual value yðtÞ; the residual

dyðtÞ ¼ yðtÞ � ŷðtÞ (2)
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is coded by a scalar quantization method. According to the basic principles of
information theory, the length of this code is asymptotically approximated by the
sum of the entropies H of the residuals. The coding complexity can be approximated
by [10]

K̂ðyÞ ¼
X

t

HðdyðtÞÞ: (3)

Assuming that the residual is stationary and ergodic and that the predictor uses a
history of bounded length, and ignoring border effects, we have the simpler version
[10]:

K̂ðyÞ ¼ THðdyÞ; (4)

where dy denotes a random variable with the marginal distribution of the residual.
Note that we made the assumption here that the signal is stationary.

To use the approximation in Eq. (4) in practice, we need to fix the structure of the
predictor f and find an approximation of the entropy of dy: We use a
computationally simple predictor structure, given by a linear autoregressive model:

ŷðtÞ ¼
X
t40

atyðt� tÞ: (5)

To approximate the entropy of dy; we adopt a simpler method here, which is
possible by assuming that we have prior knowledge of the distribution of the residual
(in particular, in many cases we can assume that the residuals are supergaussian [10]).
We assume that we know a good approximation of the (negative) logarithm of the
probability density of the residual, denoted by G. Then we obtain the approximation:

HðdyÞ � EfGðdyÞg: (6)

In ICA, if the signals to be reconstructed satisfy certain properties, an exact form
of the contrast function is not required in order to achieve the desired estimation
results [4,10,12]. We may therefore optimistically assume that the exact form of the
function G is not very important here either, as long as it is qualitatively similar
enough [10].

To find the ‘most interesting’ directions w, use the above approximation of
complexity for yðtÞ ¼ wT xðtÞ: Note that the values of at are function of w only. Thus,
we can express the approximation of complexity as a contrast function of w only:

K̂ðwT xðtÞÞ ¼ EfGðwT ðxðtÞ �
X
t40

atðwÞxðt� tÞÞÞg; (7)

then we can use an algorithm to find the minima of the approximation of complexity.
To begin, we can simplify the algorithm by first whitening the zero mean data xðtÞ;
for example, by

~xðtÞ ¼ VxðtÞ ¼ ðEfxðtÞxðtÞT gÞ�1=2xðtÞ: (8)

This is a well-known preprocessing step in ICA [9–11]. This implies that the
constraint of unit variance of wT xðtÞ can be replaced by the constraint of unit norm
of w. Thus, we can estimate the ‘most interesting’ directions w by minimizing, for
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whitened data ~xðtÞ; the following contrast function:

min
kwk2¼1

K̂ðwT ~xðtÞÞ ¼ E GðwT ð ~xðtÞ �
X
t40

atðwÞ ~xðt� tÞÞÞ

( )
: (9)

Remark. It should be noted that the contrast function derived here simplifies the
estimation procedure of the original complexity pursuit. Using the contrast function,
we can derive the same original gradient descent complexity pursuit algorithm. But
we would develop a fixed-point algorithm for complexity pursuit, which is one of the
most powerful learning algorithms and has advantages as compared to other
gradient-based algorithms often used in neurocomputing.
3. A fixed-point algorithm for complexity pursuit

To perform the optimization in (9), we can use a fixed-point iteration along similar
lines as the FastICA algorithm for maximizing nongaussianity [9,11]. The fixed-point
algorithm can be found using an approximative Newton method. Denote by

zðwÞ ¼ ~xðtÞ �
X
t40

atðwÞ ~xðt� tÞ: (10)

According to the Kuhn–Tucker conditions [14], the optima of K̂ðwT ~xðtÞÞ ¼
EfGðwT zðwÞÞg under the constraint kwk2 ¼ 1 are obtained at points where

EfzðwÞgðwT zðwÞÞg þ E
qzðwÞ

qw
wgðwT zðwÞÞ

� �
� bw ¼ 0; (11)

where b is some constant and the function g is a derivative of G. Similar to the
analysis of Hyvärinen [10], note that the quantity qzðwÞ=qw w depends on only the
past values of wT ~xðtÞ: Therefore, it is independent of the residual wT zðtÞ; which has
the role of the innovation process here. Thus, the second term in (11) disappears and
we have

EfzðwÞgðwT zðwÞÞg � bw ¼ 0: (12)

Now let us try to solve this equation by Newton’s method. Denoting the function on
the left-hand side of (12) by F, we obtain its Jacobian matrix JF ðwÞ as

JF ðwÞ ¼ E
qzðwÞ

qw
gðwT zðwÞÞ

� �
þ E

qzðwÞ

qw
wg0ðwT zðwÞÞzðwÞT

� �
þ EfzðwÞzðwÞT g0ðwT zðwÞÞg � bI : ð13Þ

Similar to the above analysis again, the first and the second term in (13) disappear as
well and we obtain

JF ðwÞ ¼ EfzðwÞzðwÞT g0ðwT zðwÞÞg � bI : (14)

To simplify the inversion of this matrix, we decide to approximate the first term in
(14). First, assume that xðtÞ and sðtÞ follow the ICA mixing model: xðtÞ ¼ AsðtÞ: After
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the data xðtÞ are whitened, we have ~xðtÞ ¼ ~AsðtÞ; where the new mixing matrix ~A is
orthogonal [11]. Then the innovation processes ~sðtÞ ¼ sðtÞ �

P
t40 atsðt� tÞ follow

the model as well (assume that the innovation process has zero mean and unit
variance) [8], i.e. zðwÞ ¼ ~A~sðtÞ: We obtain

EfzðwÞzðwÞT g ¼ ~AEf~sðtÞ~sðtÞT g ~A
T
¼ ~A ~A

T
¼ I : (15)

Since the data are whitened, a reasonable approximation seems to be

EfzðwÞzðwÞT g0ðwT zðwÞÞg

� EfzðwÞzðwÞT gEfg0ðwT zðwÞÞg ¼ Efg0ðwT zðwÞÞgI : ð16Þ

Thus the Jacobian matrix becomes diagonal, and can be easily inverted. Thus, we
obtain the following approximative Newton iteration:

w w�
½EfzðwÞgðwT zðwÞÞg � bw

½Efg0ðwT zðwÞÞg � b
(17)

w w=kwk: (18)

This algorithm can be further simplified by multiplying both sides of (17) by b�
Efg0ðwT zðwÞÞg: This gives, after straightforward algebraic simplification

w EfzðwÞgðwT zðwÞÞg � Efg0ðwT zðwÞÞgw (19)

w w=kwk: (20)

Thus, the fixed-point iteration in Eq. (9) can be obtained as:

w Efð ~xðtÞ �
X
t40

atðwÞ ~xðt� tÞÞgðwT ð ~xðtÞ �
X
t40

atðwÞ ~xðt� tÞÞÞg

� Efg0ðwT ð ~xðtÞ �
X
t40

atðwÞ ~xðt� tÞÞÞgw ð21Þ

w w=kwk: (22)

The function g should be chosen as in ordinary ICA, but according to the probability
distribution of the residual [10]. If the residual is supergaussian, gðuÞ ¼ tanhðauÞ is
suitable, where aX1 is a constant [2,9,10]. For subgaussian residuals, one could use
gðuÞ ¼ u� tanhðuÞ [7] or gðuÞ ¼ u3; for example. For almost gaussian residuals, a
linear g could be used [10].

Thus, after the data xðtÞ are whitened, the complexity pursuit algorithm is then as
follows. At every step, first estimate the autoregressive constants atðwÞ in Eq. (5) for
the time series given by wT ~xðtÞ; t ¼ 1; . . . ;T : Then do the fixed-point iteration in (21)
and the normalization in (22) (such quantities are for the current estimate of w in
each iteration step).

To estimate several projections, one can simply use a deflation scheme
(Gram–Schmidt orthogonalization scheme) [9,11].



ARTICLE IN PRESS

Z. Shi et al. / Neurocomputing 64 (2005) 529–536534
A simple special case of the method is obtained when the autoregressive model has
just one predicting term [10]:

ŷðtÞ ¼ a1yðt� 1Þ: (23)

The lag need not be equal to 1, but this is the basic case. The parameter a1 in the
algorithm can then be estimated simply by a least-squares method as [10]:

â1 ¼ wT Ef ~xðtÞ ~xðt� 1ÞT gw: (24)
4. Simulations

We created six signals using an AR(1) model. Signals 1, 2, 3 and 4 were created
with supergaussian innovations and signals 5 and 6 with gaussian innovations; all
innovations had unit variance. Signals 1, 3 and 5 had identical autoregressive
coefficients (0.25) and therefore identical autocovariances; signals 2, 4 and 6 had
identical coefficients (0.5) as well. The signals were mixed by a 6� 6 random mixing
matrix (denote by A) as in ICA. Sample size T was 20 000, and the error index
defined as [1]:

E ¼
XM
i¼1

XM
j¼1

jpijj

maxkjpikj
� 1

 !
þ
XM
j¼1

XM
i¼1

jpijj

max
k
jpkjj
� 1

0
@

1
A; (25)

where pij is the ijth element of M �M matrix P ¼WA (W is the separating matrix in
ICA). Ordinary ICA methods and methods based on autocovariances would fail
with these data [10]. Thus, for the goal of comparison, we tested two algorithms
(complexity pursuit (GradCP) [10] and complexity pursuit using the fixed-point
iteration in this paper (FastCP)) in the simulations. The nonlinearity was chosen as
gðuÞ ¼ tanhðuÞ in the two algorithms and the step size in the GradCP was taken equal
to 1. The two algorithms were run for every fixed iteration N and the iteration N was
varied from 5 to 60. At every trial, the two algorithms were run 100 times with
different mixing matrices and the error was estimated as the average of the errors.
The results are depicted in Fig. 1.
5. Conclusions

In this paper, we have presented a fixed-point algorithm for complexity pursuit.
The fixed-point algorithm simplifies the estimation procedure of the original
complexity pursuit and improves its convergence properties. Furthermore, in
contrast to other gradient-based algorithms, the fixed-point algorithm does not
need to choose any learning step sizes. This means that the algorithm is easy to use.
Interestingly, assuming that the signals have no time dependencies, our method
reduces to the well-known FastICA algorithm in ICA [9,11].
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Fig. 1. Convergence of the two complexity pursuit algorithms for artificially generated data. Horizontal

axis: iteration. Vertical axis: error measure as given in the text. Dot–dashed line: GradCP; Solid line:

FastCP.
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